Энергетика будущего

Теперь можно поговорить и о термоядерной энергетике, которую многие считают панацеей от грядущих энергетических проблем.

А проблемы ожидаются действительно серьезные. В настоящее время потребление энергии в мире составляет около 17,5 тераватт (ТВт). Разделив эту величину на население планеты, мы получим примерно 2400 ватт на человека, что можно легко оценить и представить: потребляемая каждым жителем Земли, включая детей, энергия соответствует круглосуточной работе двадцати четырех 100-ваттных электрических ламп. Согласно прогнозу Международного агентства по энергетике, мировое потребление энергии к 2030 году увеличится еще на 50%. При этом основной рост энергопотребления придется на развивающиеся страны, где полтора миллиарда человек в настоящий момент испытывает острую нехватку электрической энергии.

Введение новых энергомощностей на основе ископаемых топлив чреват ускорением потребления невосполнимых ресурсов, что приведет к резкому повышению их стоимости (в том числе за счет исчерпания доступных и разработанных месторождений), а также дальнейшему ухудшению экологической обстановки. Освоение же термоядерного синтеза позволит раз и навсегда решить проблему энергообеспечения — человечество получит дешевый и практически неисчерпаемый источник энергии.

Появления термояда ждут всю вторую половину XX века. Ожидания эти настолько перегреты, что возникла весьма популярная конспирологическая теория, которая гласит: на самом деле термояд изобрели давно, но нефтяные магнаты скрывают это изобретение от народных масс, чтобы не потерять в одночасье свои сверхприбыли. Как и любая конспирология, подобная теория не выдерживает ни малейшей критики и остается темой для фантастической и детективной прозы. Однако понимание этого не отменяет главный вопрос: когда же мы овладеем термоядерной энергией?

Самый первый ответ прост: мы уже овладели термоядерной энергией.

Как ни парадоксально звучит, но это правда. Термоядерная реакция (или ядерная реакция синтеза), при которой осуществляется слияние более легких ядер в более тяжелые, была описана физиками еще в 1910-е годы, однако впервые ее наблюдал великий английский физик Эрнст Резерфорд — в 1919 году он столкнул на большой скорости гелий с азотом, получив водород и тяжелый кислород. Спустя пять лет Резерфорд успешно провел синтез сверхтяжелого водорода трития из ядер тяжелого водорода дейтерия.

Примерно в то же самое время астрофизик Артур Эддингтон выдвинул смелую гипотезу, что все звезды горят благодаря протеканию в их недрах термоядерных реакций. В 1937 году американскому ученому Хансу Бете удалось доказать протекание термоядерных реакций на Солнце — следовательно, Эддингтон оказался прав: звезды действительно черпают свою колоссальную энергию из термоядерного синтеза. Именно эта реакция позволяет Солнцу светить миллиарды лет — подсчитано, что если бы оно состояло из угля или бензина, то выгорело бы за ничтожную тысячу лет.

Идея воспроизведения «солнечного костра» на Земле принадлежала японскому физику Токутаро Хагивара, который в 1941 году высказал предположение о возможности возбуждения термоядерной реакции между ядрами водорода с помощью взрывной цепной реакции деления ядер урана — то есть атомный взрыв должен создать условия (сверхвысокие температура и давление) для начала термоядерного синтеза. Чуть позже к такой же идее пришел Энрико Ферми, который участвовал в создании американской атомной бомбы. В 1946 году под руководством Эдварда Теллера в Лос-Аламосской Лаборатории стартовал первый исследовательский проект в сфере термояда.

Термоядерная эра началась 1 ноября 1952 года, когда американские военные взорвали термоядерную бомбу мощностью 1,4 мегатонны на атолле Эниветок в Тихом океане. В СССР аналогичный эксперимент был успешно осуществлен в 1953 году, в Великобритании — в 1957 году, в Китае — в 1967-ом, во Франции — в 1968-ом.

Таким образом, человечество использует термоядерный синтез уже больше полувека, но пока только в разрушительных целях. Почему же никак не получается использовать его более рационально? Ведь научились же делать атомные реакторы на базе управляемого распада?

Проблема в том, что между урановым распадом и водородным синтезом есть принципиальная разница — последний, как мы помним, осуществляется при чрезвычайно высоких (солнечных) температурах. В недрах звезд температура достигает 15 миллионов градусов, оптимальная же температура для проведения термоядерных процессов с точки зрения энергетики — 100 миллионов градусов. Любое вещество при подобной температуре немедленно превратится в плазму.

Физики быстро придумали решение — они предложили удерживать высокотемпературную плазму внутри «магнитной ловушки». Первые варианты магнитных ловушек были рассмотрены еще в 1946 году в Лос-Аламосе. Однако американским ученым показалось тогда, что подобные «сосуды» неизбежно будут «подтекать», и поэтому дальше вычислений дело не пошло.

В Советском Союзе к идее создания промышленного термоядерного реактора отнеслись с куда большим вниманием. Помог случай. Академик Андрей Сахаров писал в своих «Воспоминаниях», что впервые задумался об осуществлении управляемой термоядерной реакции в 1949 году, однако «без каких-либо разумных конкретных идей». Летом 1950 года из секретариата Лаврентия Берии, курировавшему советский атомный проект, на заключение Сахарову было прислано письмо, отправленное в ЦК ВКП(б) младшим сержантом Олегом Лаврентьевым, который служил на Сахалине радиотелеграфистом. Лаврентьев предложил вполне разумную схему водородной бомбы, а также конструкцию термоядерного реактора, в котором изоляция плазмы осуществлялась за счет постоянного электрического поля. Сахаров в своем отзыве весьма лестно отозвался о Лаврентьеве, но подчеркнул, что электростатическая термоизоляция плазмы неосуществима на практике. Тогда же Сахаров понял, что плазму можно удержать магнитным полем, замкнутым внутри тороидальной (в виде бублика) обмотки. Через несколько дней к этой проблеме подключился ведущий физик Игорь Тамм. Вместе они рассчитали конфигурацию магнитных полей, способных сжимать плазму в тонкий шнур и препятствовать ее падению на стенки камеры. Эти вычисления стали основой программы разработки тороидального магнитного термоядерного реактора, утвержденной Советом министров 5 мая 1951 года. Научное руководство этими исследованиями было возложено на члена-корреспондента АН СССР Льва Арцимовича.

Параллельно с советскими учеными американский физик Лайман Спитцер предложил более сложную конструкцию магнитного реактора, который он назвал стелларатором. Первые эксперименты со стеллараторами оказались неудачными, но сегодня с этими системами работают в США, Японии и ФРГ. Примерно тогда же английские и американские физики начали эксперименты с магнитным удержанием газовых разрядов в трубках-бубликах. Позднее были предложены и другие типы магнитных ловушек для плазмы. Однако время показало, что наиболее перспективной является схема Сахарова-Тамма. Именно на ее основе были созданы многочисленные реакто-ры-токамаки.

Считается, что термин «ТОКАМАК» возник как аббревиатура фразы «ТОроидальная КАмера с МАгнитными Катушками», однако на самом деле это всего лишь удобная расшифровка уже имевшегося названия.

Основные работы над термоядерными реакторами велись в Институте атомной энергии, который в 1950-е годы «маскировался» под вывеской Лаборатории измерительных приборов АН СССР (ЛИПАН). Реакторами занималось особое подразделение — Бюро электрических приборов (БЭП), для которого построили отдельный дом рядом со зданием Отдела электроаппаратуры, где под руководством Арцимовича группа физиков занималась электромагнитным разделением радиоактивных изотопов. В феврале 1953 года там состоялся семинар, на котором обсуждали доклад о разработке магнитного термоядерного реактора, подготовленный техническими руководителями проекта Николаем Явлинским и Игорем Головиным. Именно на этом семинаре будущая установка впервые была названа токамаком. Головин тогда сказал, что это просто сокращение от слов «тока максимум». Авторы доклада полагали, что сила тока в тороидальных разрядах намного превысит силу тока в прямолинейных трубках, отсюда и появилось название аппарата. Со временем эта гипотеза была опровергнута, а вот термин «токамак» остался и со временем сделался международным.

Главным элементом конструкции токамака являются катушки, создающие мощное магнитное поле. Эти катушки напоминают гигантские трансформаторы. Рабочая камера токамака заполняется газом, а в катушках возбуждается магнитное поле. В результате пробоя под действием вихревого поля происходит усиленная ионизация газа в камере, отчего тот превращается в плазму. Возникает плазменный шнур, движущийся вдоль тороидальной камеры и разогреваемый продольным электрическим током. Магнитные поля катушек и плазмы удерживают шнур в равновесии и придают ему форму, которая не дает шнуру коснуться стенок и прожечь их.

Ток используется для нагрева плазмы лишь до температуры порядка 10 миллионов градусов, для получения большей температуры используются другие методы. Кроме того, постоянно нагревать плазму током опасно, поскольку он создает собственное магнитное поле, — если оно превысит по силе поле катушек, то скорость движения плазменного шнура сильно увеличится, и он, прорывая теплоизоляцию, коснется стенок. Поэтому дополнительный подогрев осуществляется посредством ультразвука, электромагнитных волн высокой частоты или введения в камеру пучков быстрых атомов.

Основные вехи овладения мирным термоядом таковы. В 1954 году сотрудники БЭП приступили к испытаниям фарфоровой тороидальной камеры с магнитной намоткой, которая стала прообразом будущих токамаков. В конце 1960-х на советском токамаке Т-3 А была получена плазма с температурой электронов в 20 миллионов градусов, а ионов — в 4 миллиона и впервые зарегистрировано устойчивое термоядерное излучение плазменного шнура. Через 10 лет принстонский токамак RLT нагрел ионы в плазме примерно до 80 миллионов градусов. В 1995 году на другом американском токамаке TFTR температура ионов была доведена до 510 миллионов градусов; позднее этот рекорд превзошел японский токамак JT-10, который разогрел ионы до 520 миллионов градусов.

Однако разогрев до солнечных температур — это самое начало пути. Токамак не является энергетической установкой — наоборот, он жрет энергию, ничего не давая взамен. Термоядерная электростанция должна строиться на иных принципах.

Прежде всего физики определились с топливом для термояда. Хотя принято писать о термоядерной энергетике как о «солнечной», эта метафора не вполне уместна. Основой внутрисол-нечного термоядерного синтеза является так называемый водородный цикл, в ходе которого четыре протона превращаются в ядро гелия-4, два позитрона и два нейтрино. Этот цикл включает в себя несколько ядерных реакций, скорости которых зависят от температуры и плотности солнечных недр. Первая из них — превращение пары протонов в ядро дейтерия, позитрон и нейтрино, в среднем требует примерно 14 миллиардов лет (что сопоставимо с возрастом нашей Вселенной). Конечно же, некоторым протонам удается встретиться и объединиться и за меньшее время — ведь будь иначе, термоядерная печь в центре газо-пылевой туманности, которая 4,5 миллиарда лет назад дала начало нашему Солнцу, не зажглась бы и до сих пор. Однако из-за медлительности водородного цикла генерация энергии в центре Солнца в расчете на единицу массы смехотворно мала. Звучит парадоксально, но один грамм солнечной материи выделяет меньше тепла, чем грамм человеческого тела! Исполинская мощность излучения Солнца объясняется его гигантской массой, но в качестве источника энергии для электростанций водородный цикл явно не подходит.

К счастью, он не единственно возможный — существуют и другие варианты. Почти идеальной для энергетического реактора является реакция на основе слияния ядер изотопов водорода — дейтерия и трития (D + Т), в результате чего образуется ядро гелия-4 и нейтрон. Энерговыделение этой реакции меньше, чем в водородном цикле, зато счет времени идет лишь на секунды, посему такой синтез вполне устраивает конструкторов термоядерных реакторов. Источником дейтерия послужит обычная вода (примерно в одной из каждых 3350 молекул воды один из атомов водорода замещен дейтерием), а тритий будут получать из облученного нейтронами лития — самого легкого из всех металлов, третьего элемента таблицы Менделеева.

Для преодоления кулоновского отталкивания дейтериево-тритиевую плазму необходимо нагреть как минимум до 100 миллионов градусов. Однако эта температура сама по себе не повлечет за собой самоподдерживающийся термоядерный процесс. В среднем на каждые сто тысяч столкновений ядер дейтерия с ядрами трития приходится лишь один акт образования гелия. Поэтому для запуска реактора плазму следует не только подогреть, но и сильно сжать, увеличив таким образом частоту столкновений и выход гелия. Кроме того, плазму необходимо сохранить в таком состоянии достаточно долго, чтобы успело сгореть заметное количество термоядерного топлива. Понятно, что с позиций инженерного проектирования получается весьма нетривиальная задача.

Именно запредельная техническая сложность термоядерного реактора долгое время сдерживала развитие данного направления энергетики. Ведь сложность — это еще и вопрос стоимости. К примеру, в 1976 году Консультативный комитет по термоядерной энергии Министерства энергетики США попытался оценить сроки осуществления научно-исследовательских и опытно-конструкторских работ (НИОКР) на этапе создания демонстрационной (всего лишь демонстрационной!) термоядерной энергетической установки при разных вариантах финансирования исследований. При этом обнаружилось, что объемы существовавшего на тот момент годичного финансирования исследований в области термоядерной энергетики совершенно недостаточны, и при сохранении подобного уровня ассигнований создание даже уникальной экспериментальной установки никогда не завершится успехом.

Помимо технической сложности и высокой стоимости, сдерживающим фактором выступает… размер. Дело в том, что термоядерную установку обсуждаемого типа нельзя создать и продемонстрировать в виде небольшой модели. Как было сказано выше, для термоядерного синтеза необходимо не только магнитное удержание плазмы, но и достаточный ее нагрев. Отношение же затрачиваемой и получаемой энергии возрастает пропорционально квадрату линейных размеров установки, вследствие чего научно-технические возможности и преимущества термоядерных установок могут быть проверены и продемонстрированы лишь на крупных станциях. Общество просто не было готово к финансированию столь крупных проектов, пока не существовало достаточной уверенности в успехе.

Эти проблемы могли быть обойдены только в одной стране мира — в Советском Союзе, в котором власти не жалели денег на перспективные разработки и мало прислушивались к «общественному мнению». И советские физики действительно вырвались вперед, научившись строить уникальные токамаки, которые сегодня являются предметом вожделения многих научных учреждений мира.

Однако с началом реформ и в СССР начали придавать значение финансовой отдаче, поэтому возникла идея кооперации усилий в рамках международного проекта. Впервые она обсуждалась на высоком уровне в начале октября 1985 года во время встречи Генерального секретаря ЦК КПСС Михаила Горбачева и французского президента Франсуа Миттерана. Идея получила дальнейшее развитие через полтора месяца, когда Горбачев провел в Женеве переговоры с президентом США Рональдом Рейганом. Вскоре определился первоначальный круг партнеров по разработке первой термоядерной электростанции: СССР, США, Евросоюз и Япония (со временем к ним присоединились КНР и Южная Корея). В 1999 году США вышли из числа участников этой программы, однако через четыре года сочли за благо в нее вернуться.

Итак, первый экспериментальный термоядерный реактор для энергетики будет всё-таки построен — в поселке Кадараш, который находится на юго-востоке Франции, поблизости от города Экс-ан-Прованс. Выбор места был предопределен: в 1988 году именно там ввели в эксплуатацию самый большой в мире плазменный реактор на сверхпроводящих магнитах Tore Supra.

К сожалению, установка, которую построят в Кадараше, всё еще не сможет работать в качестве термоядерной электростанции, но, возможно, приблизит время ее появления. Неслучайно ее назвали ITER — эта аббревиатура расшифровывается как International Thermonuclear Experimental Reactor, но имеет и символический смысл: по-латыни iter — дорога, путь. Таким образом, кадарашский реактор должен «проложить путь» к термоядерной энергетике будущего, которая обеспечит выживание человечества и после истощения запасов ископаемого топлива.

ITER устроен следующим образом. В его центральной части располагается тороидальная камера объемом около 2000 мЗ, заполненная тритий-дейтериевой плазмой, нагретой до температуры выше 100 миллионов градусов. Образующиеся при реакции синтеза нейтроны покидают «магнитную бутылку» и сквозь «первую стенку» попадают в свободное пространство бланкета толщиной около метра. Внутри бланкета нейтроны сталкиваются с атомами лития, в результате чего происходит реакция с образованием трития — при этом количество образующегося трития должно не только обеспечивать потребности самой установки, но и быть даже несколько большим, что позволит обеспечивать тритием и другие станции. Кроме того, нейтроны должны разогревать «первую стенку» примерно до температуры 400°С. Пока решено использовать в качестве материала стенки нержавеющую ауотенитную сталь, облицованную изнутри бериллиевыми пластинами. В дальнейшем конструкторы собираются создать усовершенствованные установки с температурой нагрева оболочки выше 1000°С, что может быть достигнуто за счет использования новейших высокопрочных материалов (типа композитов из карбида кремния). Выделяющееся внутри бланкета тепло, как и в обычных станциях, отбирается первичным охлаждающим контуром с теплоносителем (содержащим, например, воду или гелий) и передается на вторичный контур, где и производится водяной пар, идущий в турбины, которые вырабатывают электроэнергию.

Установка ITER — воистину мегамашина. Ее вес составляет 19 ООО тонн, внутренний радиус тороидальной камеры — 2 метра, внешний — больше 6 метров. Сооружение реактора займет десять лет, первые эксперименты начнутся не ранее 2015 года и продлятся пару десятков лет.

Проблемы и сложности эксплуатации такой установки связаны прежде всего с тем, что мощный поток высокоэнергетических нейтронов и выделяющаяся энергия (в виде электромагнитного излучения и частиц плазмы) серьезно воздействуют на реактор и разрушают материалы, из которых он создан. Вторая основная проблема состоит в обеспечении высокой прочности конструкционных материалов реактора при длительной (в течение нескольких лет) бомбардировке нейтронами и под воздействием потоков тепла.

Однако ожидаемый результат должен окупить затраты. ITER сможет производить 200 ООО кВтчас, что эквивалентно энергии, содержащейся в 70 тоннах угля. Требуемое для этого количество лития содержится в одной минибатарейке для компьютера, а количество дейтерия — в 45 литрах воды. Указанная выше величина соответствует современному потреблению электроэнергии (в пересчете на одного человека) в странах Евросоюза за 30 лет! Максимальная же мощность ITER может составить 500 МВт.

Сам факт, что столь ничтожное количество лития и воды может обеспечить выработку такого количества электроэнергии (без малейшего загрязнения атмосферы, между прочим), является достаточно серьезным аргументом для быстрейшего освоения и развития термоядерной энергетики, несмотря на вышеперечисленные сложности и проблемы.

При этом дейтерия должно хватить на миллионы лет, а запасы легко добываемого лития вполне достаточны для обеспечения потребности в нем в течение сотен лет. Даже если запасы лития в горных породах иссякнут, физики смогут добывать его из морской воды, где он содержится в достаточно высокой концентрации.

Разумеется, создатели ITER уделяют особое внимание вопросам безопасности. К счастью, обеспечить ее гораздо проще, чем построить реактор. Используемая в термоядерных установках плазма имеет очень низкую плотность (примерно в миллион раз ниже плотности атмосферы), вследствие чего рабочая среда установок никогда не будет содержать в себе энергии, достаточной для возникновения серьезных аварий. Кроме того, загрузка топливом должна производиться непрерывно, что позволяет легко останавливать работу реактора, не говоря уже о том, что в случае аварии или резкого изменения условий окружения термоядерное «пламя» просто погаснет.

Тем не менее, опасности есть.

Во-первых, следует отметить, что хотя продукты синтеза (гелий и нейтроны) не являются радиоактивными, оболочка реактора при длительном нейтронном облучении может таковой стать. Эту проблему предполагается решить при подборе для оболочки материалов с заданными свойствами — за счет такой оптимизации можно обеспечить накопление радиоактивных продуктов с периодом полураспада не выше 10 лет.

Во-вторых, тритий является радиоактивным и имеет период полураспада 12 лет. Но хотя объем используемой плазмы значителен, из-за ее низкой плотности там содержится лишь очень небольшое количество трития (общим весом в десять почтовых марок). Поэтому даже при самых тяжелых ситуациях и авариях (полное разрушение оболочки и выделение всего содержащегося в ней трития) в окружающую среду поступит лишь незначительное количество топлива, что не потребует эвакуации населения из близлежащих населенных пунктов.

Так или иначе, но ITER будет построен. И не может не радовать, что в этом проекте будущего принимает участие наша страна. Общий вклад России сравнительно невысок— 17%, а в строительство реактора мы готовы вложить только 10%> из бюджета в 4,8 миллиарда евро, что гораздо меньше, чем вкладывают европейцы или японцы, однако без нас этот проект в принципе не может быть реализован на современном этапе — только российские специалисты обладают глубоким многолетним опытом по созданию больших сверхпроводящих магнитов, без которых нельзя удержать плазму в шнуре (спасибо токамакам!), и уникальными технологиями по обработке бериллия (спасибо ракетно-космической программе!). Кроме того, наши ученые взялись оборудовать реактор системами диагностики и контроля плазмы.

Интересно, что у ITER уже появился конкурент. Им может стать сверхмощный лазер, создаваемый в рамках проекта US National Ignition Facility (NIF), что переводится как «Национальная зажигательная установка». Проект, который ведет Ливерморская Национальная лаборатория имени Лоуренса в Калифорнии, является результатом сотрудничества правительства США с крупными индустриальными корпорациями и научным сообществом страны. Строительство лазерной установки продолжалось 12 лет и завершилось в апреле 2009 года. На лазерный комплекс было потрачено 3,5 миллиарда долларов.

Зачем же понадобились такие расходы? Оказывается, NIF тоже способен обеспечить управляемый термоядерный синтез, но несколько иным, чем ITER, путем. Еще в 1960 году Андрей Сахаров показал, что реакцию можно получить, не удерживая плазму магнитным полем, а позволяя ей свободно разлетаться во все стороны. При этом разлету плазмы препятствует инерция ее частиц, обладающих массой. Вместо очень разреженной, но долго удерживаемой магнитным полем плазмы предлагается противоположное ее состояние — очень плотная и короткоживущая. А результат будет тот же — превышение энергии, выделяемой в реакциях синтеза, над энергетическими затратами.

Конкретный путь реализации «инерционного термояда» был указан советскими физиками Николаем Басовым и Олегом Кро-хиным в 1962 году — обжимать и нагревать дейтерий-тритие-вые «мишени» (размером в 1 миллиметр) мощными лазерными пучками. Это направление получило название «лазерного термояда».

За прошедшие полвека лазерный метод проделал большой путь. Были созданы многопучковые установки, которые позволяли синхронно сбрасывать импульсы лазерного излучения на сферические мишени, добиваясь их равномерного сжатия и разогрева. Были разработаны сверхкороткие импульсные лазеры, наиболее пригодные для «зажигания» термоядерной реакции, и многослойные мишени, сжимаемые равномерно без потери формы.

В основе NIF — 192 мощных лазера, которые будут одновременно направляться на миллиметровую сферическую мишень (около 150 микрограммов термоядерного топлива— смесь дейтерия и трития). Температура мишени достигнет в результате 100 миллионов градусов, при этом давление внутри шарика в 100 миллиардов раз превысит давление земной атмосферы. То есть условия в центре мишени будут сравнимы с условиями внутри Солнца.

Первый цикл целевых испытаний NIF начался летом 2009 года, а попытка получить термоядерный синтез с положительным энергетическим сальдо запланированы на 2010 год.

Эксперты, правда, указывают, что главный недостаток такого рода установок — слабое поглощение лазерного излучения горячей плазмой: чем выше ее температура, тем меньше она «замечает» лазерный луч, проходящий через нее. Велики потери и на отражение от холодной короны, образованной вокруг мишени.

Впрочем, даже если американским ученым не удастся запустить термоядерный синтез в фокусе своего суперлазера, он найдет множество других применений, ведь в отличие от чисто гражданского реактора ITER этот проект курируют военные из Пентагона…

Как видите, и магнитный термояд, и инерционный лазерный термояд требуют серьезных капиталовложений и большого строительства, поэтому постоянно всплывает тема «холодного» термояда, который действительно смог бы сделать фантастику реальностью.

Говоря о холодном термояде, нужно сразу отметить, что под этим термином понимаются самые разные реакции, и зачастую происходит путаница.

Направление, получившее название холодного термояда, или, что более правильно, мюонного катализа, было предложено Андреем Сахаровым и Яковом Зельдовичем в 1957 году. Суть его заключается в использовании нестабильной частицы — отрицательно заряженного мюона, масса которого в 200 раз больше массы электрона. Мюон по своим свойствам очень похож на электрон (его называют тяжелым электроном), в частности, он может замещать электрон в атоме, но по закону квантования радиус мюонной орбиты в 200 раз меньше, чем электронной. Атомы дейтерия и трития, в которых место электрона занял мюон, могут объединяться в молекулы, где ядра дейтерия и трития (по той же причине) сближены в 200 раз. В горячей плазме при таком сближении ядерная реакция не пойдет, но в мезомолекуле дейтерий и тритий постоянно находятся на таком расстоянии и могут, «почувствовав» друг друга, с заметной вероятностью осуществить «туннельный переход», вступив в реакцию. При этом образуются ядро гелия и нейтрон, выделится энергия синтеза, а мюон, ставший вновь свободным, может сесть на орбиту соседнего атома, заменив в нем электрон. Всё повторится — произойдет новое сближение ядер и новая реакция синтеза. Таким образом, мюон может выступать ядерным катализатором. За время своей короткой жизни (2 микросекунды) мюон успевает осуществить до ста реакций! При этом не нужны сверхвысокие температуры, нет надобности в капризной плазме и сильных магнитных полях. Но эта кажущаяся простота не дается даром — нужны интенсивные потоки мюонов, которые можно получить только на ускорителях во взаимодействии энергичных протонов с ядрами, а значит, снова понадобятся значительные финансовые расходы и большие стройки — без уверенности в конечном успехе.

В конце 1980-х годов появилось сообщение американских химиков о холодном синтезе при электролизе тяжелой воды. Секрет якобы состоял в выборе материала электродов (лучшим оказался палладий), адсорбирующего водород. Ионы дейтерия скапливались в электроде, где из-за большого давления мог происходить «туннельный эффект», как при мюонном катализе. Никакие теоретические оценки не подтверждали такой возможности, что сразу настораживало. Тщательная проверка, проведенная в других лабораториях, показала ошибочность этих экспериментов. И всё же, отвергнув данный метод, физики получили положительный результат: оказалось, что при некоторых условиях ядерный синтез возможен без высокой температуры за счет скрытого ускорения частиц в субатомных электрических полях. Впрочем, получить на этой основе энергетически выгодный синтез невозможно.

Другая «сенсация» пока еще жива, но, похоже, и она скоро заглохнет. Речь идет о «пузырьковом» термояде, предложенном десять лет назад академиком Робертом Нигматулиным из Уфимского научного центра РАН и подтвержденном группой американских исследователей во главе с профессором Диком Лэхи. Это тоже вариант холодного синтеза, но с более серьезным обоснованием. В дейтерированном ацетоне при температуре ниже 2-3°С создавались условия роста микропузырьков газа, а затем внешним акустическим воздействием проводилось их сжатие (кавитация), что резко повышало температуру до нескольких миллионов градусов и могло инициировать реакции синтеза. При экспериментах регистрировались нейтроны и активность трития. То есть ядерный синтез происходил, но, как отмечают эксперты, совершенно не очевидно, что на выходе будет получен энергетически выгодный термояд — затраты энергии опять оказываются выше, чем ее выделение.

Сам академик Нигматулин говорит по этому поводу так: «Для досконального изучения явления необходимы время и средства. Хотя эти потоки нейтронов и трития невелики, но и не малы, тем более, что установка занимает всего лишь письменный стол и работает много часов. Высвобождаемая энергия пока ничтожна, но лиха беда начало. Я представляю, как повысить производительность и эффективность процесса. Помимо практических перспектив, представленные измерения позволят определять свойства вещества при десятках миллионах градусов и плотностях в пятьдесят раз больших, чем встречаются в природе. Теперь мы крайне заинтересованы в том, чтобы другие лаборатории проверили наши результаты».

Таким образом, уповать на холодный термояд не стоит — пока что это игрушка для теоретиков, и не факт, что когда-нибудь удастся получить сколько-нибудь значимый результат.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий
SQL - 36 | 0,208 сек. | 7.92 МБ