Иные опасности атомного оружия

Сверхбомба

После испытания «Царь-бомбы» в 1961 году на Новой Земле с выходом в 50 мегатонн, были осуществлены разработки более мощных бомб с выходом в 200 и даже 1000 мегатонн, которые предполагалось транспортировать на судах к американским берегам и вызывать с их помощью цунами [Адамский, Смирнов 1995]. Это значит, что, вероятно, появились технические возможности неограниченно наращивать взрывную силу бомбы.

Важно также отметить, что Царь-бомба была испытана всего через 12 лет после взрыва первой атомной бомбы. Этот факт может говорить о том, что и другим державам может потребоваться относительно небольшой срок для перехода к огромным бомбам. Если сопоставить массовый коэффициент бомбы (6 мегатонн взрыва на тонну веса) с массой ядерных реакторов порядка нескольких тысяч тонн, то становится понятно, что верхний предел сверхбомбы, которую сейчас можно сделать, составляет около ста гигатонн. Этого недостаточно для уничтожения всех людей силой взрыва, поскольку при падении астероидов выделялась энергия в тысячи раз больше. Взрыв сверхбомбы в каменноугольном пласте вызовет, возможно, длительную ядерную зиму, сочетающуюся с сильным радиоактивным заражением.  (Аналогичного тому, как астероид, возможно, привёл к разрушению запасов нефти в Америке 65 млн. лет назад, что имело серьёзные климатические последствия [Harvey 2008]. Несколько десятков сверхбомб, размещённых в разных местах Земли, могут покрыть своим поражающим ударом всю территорию планеты.

Перед первым испытанием ядерной бомбы Тринити Комптоном и др. был выполнен отчёт LA-602 Ignition of atmosphere with nuclear bomb [LA-602 1945], в котором доказывалось, что взрыв бомбы не может привести к самоподдерживающейся реакции синтеза ядер азота в атмосфере из-за потери энергии излучением. Там же сказано, что для оценки рисков поджига океанов требуются дополнительные исследования. Эти исследования, которые, скорее всего, были выполнены, остаются засекреченными, что, в частности, может означать, что они показывали минимальные условия, которые необходимы для поджига дейтерия в земных океанах. Кроме того, возможны реакции захвата водорода углеродом или кислородом, которые тоже поддерживают взрывное горение (см. И.С. Шкловский. «Звёзды, их рождение, жизнь и смерть» [Шкловский 1984]). Эти вещества находятся в больших количествах в залежах гидратов метана на морском дне. Подробнее вопросы о возможности инициации термоядерного взрыва в недрах Земли или других планет я рассматриваю в своей статье «О возможности искусственной инициации взрыва планет-гигантов и других объектов Солнечной системы»1.

Здесь же нам важно отметить, что в отсутствии точных данных о невозможности этого процесса, мы должны допускать, что при определённых условиях — правильный выбор места, очень мощная бомба -инициация самоподдерживающейся реакции синтеза в земных средах возможна. Подобная возможность открывала бы относительно простой путь к созданию реального оружия судного дня, которое бы гарантированно уничтожало бы всю жизнь на Земле.

Высказывались также предположения, что взрыв мощных атомных бомб в тектонических разломах мог бы привести к катастрофическим сейсмическим явлениям, но я полагаю это сомнительным, поскольку тектонические разломы и без того являются источниками землетрясений гигатонной силы.

Накопление антиматерии

Станислав Лем как-то сказал, что он больше боится антиматерии, чем Интернета. Однако, судя по всему, антиматерия не даёт принципиально большей разрушительной силы, чем обычная водородная бомба. Максимальная эффективность ядерного заряда равна 6 мегатонн на тонну веса, что соответствует примерно 0,15 кг антиматерии. (Энергия 1 кг вещества равна по формуле Эйнштейна 9* 10 16 Дж, а одна мегатонна в тротиловом эквиваленте равна 4* 1015 Дж, при этом массу прореагировавшей антиматерии следует удвоить за счёт масс аннигилировавшей с ней обычной материи). Но для удержания антиматерии тоже понадобятся специальные ловушки, которые должны много весить. Кроме того, очень трудно обезопасить антиматерию от случайного взрыва, тогда как обезопасить атомную бомбу легко. Наконец, нужно масса энергии на получение самой антиматерии. В силу этого кажется бессмысленным делать бомбы огромной мощности из антиматерии — да и мощности имеющихся атомных боеприпасов достаточно для любых мыслимых разрушающих воздействий. Поэтому я полагаю маловероятным накопление антиматерии в военных целях. Только если будут сделаны некие новые принципиальные физические открытия, антиматерия, возможно, будет представлять опасность. Также опасно применение антиматерии в глубоком космосе, где теоретически можно собрать значительную ее массу в виде некого «метеорита» и направить на Землю.

Однако антиматерия может стать эффективным инициатором термоядерной реакции для «чистых водородных бомб» или средством для накачки рентгеновских лазеров. Подсчитано, что триггером для термоядерной реакции может стать всего 1 мкг антиматерии. Дешёвая бомба

Есть также опасность принципиального удешевления ядерного оружия, если удастся запускать самоподдерживающуюся термоядерную реакцию без инициирующего ядерного заряда с помощью химической имплозии (цилиндрической), лазерного поджигания, магнитного сжатия, электрического разряда и небольших порций антиматерии, применённых в некой комбинации (см., например, статью Л. П Феоктистова «Термоядерная детонация» [Феоктистов 1998], которая, по сути, представляет собой проект создания водородной бомбы неограниченной мощности с помощью лазерного поджигания — и тем не менее лежит в открытом доступе.)

Другой фактор удешевления — использование наработок нанотехнологий, то есть, высокоточное и в перспективе дешёвое производство с помощью микророботов. Третий фактор — обнаружение новых способов выделения урана из морской воды и его обогащения.

Есть также риск, что мы существенно недооцениваем простоту и дешевизну ядерного оружия, а, следовательно, и его количество в мире. Например, возможно, что реакторный плутоний можно приспособить для бомб пушечной схемы с выходом около 2 килотонн, пригодных для актов ядерного терроризма2. Любые открытия в области холодного ядерного синтеза, управляемого ядерного синтеза на токамаках, доставки гелия-3 из космоса, превращения элементов упростят и удешевят производство ядерного оружия. Подробнее о проблемах создания «чистого» оружия на основе реакций синтеза без запала на основе реакций деления см. в статье «Опасный термоядерный поиск»3.

Атака на радиационные объекты

Ещё одним способом устроить конец света с помощью ядерного оружия является атака крылатыми ракетами (баллистические не имеют достаточной точности) всех ядерных реакторов на планете и особенно -хранилищ отработанного ядерного топлива. Хотя вряд ли удастся возбудить цепную реакцию в них (однако эту возможность нельзя исключать при прямом попадании атомной бомбы в реактор или хранилище отходов), в воздух выделятся огромные количества радиации. «По оценке МАГАТЭ, к 2006 году из энергетических реакторов (а их в мире свыше 400) выгружено около 260 тыс. тонн ОЯТ, содержащих более 150 млрд. Кюри радиоактивности» [Карпан 2006]. Также известно, что к 2006 году страны мира накопили около 260 тыс. тонн ОЯТ, а к 2020 году его количество составит не менее 600 тыс. тонн (там же). То есть, в XXI веке количество радиоактивных отходов, вероятно, будет расти нелинейно, увеличиваясь как за счёт накопления, так и за счёт введения в строй новых реакторов.

При равномерном распылении 150 млрд. кюри мы получаем 300 кюри/кв.км земной поверхности. Это далеко за пределами норм отселения и запрета на сельское хозяйство по чернобыльской практике3. При грубом пересчёте (эмпирическая формула — 1 кюри на кв. м. даёт 10 рентген в час) это породит активность 3 миллирентгена в час. Этого недостаточно для мгновенной смертности, так как составляет только примерно 2 рентгена в месяц, а максимально допустимая безопасная доза 25 рентген наберётся только за год. Однако такая местность надолго (в ОЯТ много долгоживущих элементов, в том числе плутония) станет непригодной для сельского хозяйства, поскольку в растительности и в организмах животных эти вещества накапливаются и при последующем употреблении вовнутрь наносят на порядок более сильный удар по организму человека. Иначе говоря, выжившие люди не смогут заниматься сельским хозяйством и будут обречены на постепенную деградацию от болезней. Всё же гарантированного вымирания здесь не будет, так как люди — существа очень адаптивные и живучие, если, конечно, не вмешаются ещё какие-либо факторы.

Взрыв мощных бомб в космосе

Если земная технология широко шагнёт в космос, рано или поздно станет возможно создание огромных бомб космического базирования, весом в сотни тонн (в частности, с целью отклонения опасных астероидов). Риск состоит во взрыве нескольких десятков гигатонных бомб на низких орбитах, которые просто сожгут Землю своим излучением. Однако в случае такой атаки всё равно будут выжившие: шахтёры, подводники, спелеологи. (Хотя могут выжить только одни мужчины, и род людей на этом закончится, так как в природе мало женщин-подводников и шахтёров. Но спелеологи бывают.) По эффекту воздействия получится искусственный гамма-всплеск.

Понравилась статья? Поделиться с друзьями: